DRT 2015 Aachen, September 9-11, 2015

Renée Heilbronner Steve D. Barrett

Image Analysis in Earth Sciences

25 minutes stroll through the book...

... by way of two examples

I. Black Hills Quartzite revisited with Jan Tullis

2. Work in progress:

The microstructure of 70:30 olivine-orthopyroxene mixtures experimentally deformed at 1200°C with Miki Tasaka

and a take-home message and an announcement and ... somebody has to turn off the microphone

the publication

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, B10202, doi:10.1029/2005JB004194, 2006

Evolution of c axis pole figures and grain size during dynamic recrystallization: Results from experimentally sheared quartzite

Renée Heilbronner¹ and Jan Tullis²

Figure 1. Geometry of experimentally sheared Black Hills quartzite samples. (a) Jacketed sample after general shear deformation: BHQ sheared between 45° precut Brazil quartz pistons (total undeformed length ≈ 15 mm, diameter = 6.3 mm), which are able to slide horizontally relative to the upper and lower ZrO₂ pistons. (b) Thin section of sheared BHQ sample and Brazil quartz pistons under circularly polarized light. Horizontal cracks in the pistons result from unloading.

results

experimental conditions:

T = 915°C $p_c = 1.5 \text{ GPa}$ $\dot{y} = 2 \cdot 10^{-5} \text{ s}^{-1}$

(~ regime 3)

shear stresses:

Figure 2. Shear stress-shear strain curves for the four samples used in this study; for deformation conditions and percent thinning see Table 1.

(Heilbronner & Tullis, JGR, 2006)

3D grain size:

Figure 5. Grain size distribution of undeformed Black Hills quartzite (BHQ) and three experimentally sheared samples. Volume percent of 3-D grains as a function of the diameter of a sphere of the same size. Undeformed BHQ, summary of all deformed samples; W920 ($\gamma \approx 1.5$); W1010a ($\gamma \approx 2.5$); W1010b ($\gamma \approx 4$); W965a ($\gamma \approx 5$); W935 ($\gamma \approx 6$); and W965b ($\gamma \approx 8$). Average grain diameters of undeformed BHQ and recrystallized grains have been determined for grain sizes >60 and <48 μ m, respectively.

why go back ?

motivation:

re-measure CIP grain size using EBSD analyze Betti's quartz - coesite experiments @ high resolution verify Stipp & Tullis piezometer

step 1: CIP vs EBSD grain size - rewrite STRIPSTAR step 2: decide on "the mean grain size" step 3: test piezometer step 4: see Betti's poster and PhD

 \Rightarrow reculer pour mieux sauter

light microscopy - CIP

w935 c-axis orientation image (COI)

w 935 grain boundary map

for segmentation, see many chapters in: Heilbronner & Barrett, Springer (2014)

 \Rightarrow segmentation is a pain

CIP grain size at higher resolution

EBSD map of same sample

(Heilbronner & Barrett, Springer, 2014)

 \Rightarrow use c-axis orientation for visualization

grain maps CIP and EBSD

n=13267 $\Rightarrow segmentation is easy$

grain size from LM and SEM

d, D (µm)

	•		
	d(µm)	D(µm)	D(µm³)
Mean	9.721	8.075	17.907
RMS	11.353		
Skewness	2.013	2.385	0.727
Mode	bin(6-7)		bin(9-10)

 $\begin{array}{c} \bullet h(d) \\ \bullet v(D) \\ \hline 140 \\ \hline 120 \\ \hline 12$

EBSD

CIP

	d(µm)	D(µm)	D(µm³)
Mean	8.291	7.915	15.357
RMS	9.502		
Skewness	1.509	1.774	0.930
Mode	bin(4-5)		bin(12-13)

 \Rightarrow CIP grain size = EBSD grain size

finding the right mean...

- arithmetic mean $\overline{\mathbf{X}} = \frac{1}{n} \cdot \sum \mathbf{x}_i$ geometric mean G
- harmonic mean
- = $n\sqrt{\prod x_i}$ н $= I / (I/n \cdot \sum I/x_i) = n / \sum I/x_i$ root-mean-square RMS = $\sqrt{(1/n \cdot \sum x_i^2)} \approx \text{area average}$ Median = $\begin{cases} x_{(n+1)/2} & \text{if } n = \text{odd} \\ (x_{n/2} + x_{n/2+1}) / 2 & \text{if } n = \text{even} \end{cases}$
 - Mode = most frequent value

	symm.	+ skew	- skew
X	5.00	4.33	5.67
Mode	5.00	4.00	6.00
RMS	5.39	4.75	5.99
Skewness	0.00	0.53	-0.53
RMS/X	108%	110%	106%

 $RMS > \overline{X} \ge G \ge H$

 \Rightarrow RMS overestimates mean

check the piezometer

RMS(d) = 10 (3.56 ± 0.27) · $\sigma^{-(1.26 \pm 0.13)}$

The diameter = diameter of a circle with he same area (d_{equ})

Measure for average 2-grain size = RMS of recrystallized grains

No stereological correction

$$RMS(d) = 78 \cdot \sigma^{-0.61}$$

(Stipp & Tullis, JGR, 2003)

⇒ piezometer underestimates stress ... or underestimates grain size

check the piezometer

RMS(d) = 10 (3.56 ± 0.27) · $\sigma^{-(1.26 \pm 0.13)}$

The diameter = diameter of a circle with he same area (d_{equ})

Measure for average 2-grain size = RMS of recrystallized grains

No stereological correction

$$RMS(d) = 78 \cdot \sigma^{-0.61}$$

(Stipp & Tullis, JGR, 2003)

 $\tau = 100 \text{ MPa} \rightarrow \Delta \sigma = 200 \text{ MPa} \rightarrow d = 4.6 \ \mu \text{m}$

⇒ piezometer underestimates stress ... or underestimates grain size

check the piezometer

RMS(d) = 10 (3.56 ± 0.27) · $\sigma^{-(1.26 \pm 0.13)}$

The diameter = diameter of a circle with he same area (d_{equ})

Measure for average 2-grain size = RMS of recrystallized grains

No stereological correction

$$RMS(d) = 78 \cdot \sigma^{-0.61}$$

(Stipp & Tullis, JGR, 2003)

 $\tau = 100 \text{ MPa} \rightarrow \Delta \sigma = 200 \text{ MPa} \rightarrow d = 4.6 \ \mu\text{m}$ $d = 10 \ \mu\text{m} \rightarrow \Delta \sigma = 108 \text{ MPa} \rightarrow \tau = 54 \text{ MPa}$

 \Rightarrow piezometer underestimates stress ... or underestimates grain size

check stresses (= work in progress)

 \Rightarrow re-calibrate the Griggs apparatus

use 3D mode(s) (= my mission on earth...)

 \Rightarrow 3D mode more meaningful than 2D mean

2. olivine - pyroxene (= work in progress)

motivation:

torsion experiments to find flow law for mantle material

first finds: dislocation creep and diffusion creep

aim of microstructure analysis: step 1: find grain size(s) of olivine and pyroxene step 2: find shape(s) step 3: find spatial relations

... think about results

... see forthcoming paper by Miki Tasaka

Miki Tasaka David Kohlstedt Mark Zimmermann

Univ. Minnesota, Minneapolis

70:30 mixture olivine-orthopyroxene

Paterson apparatus $T = 1200^{\circ}C$ $p_c = 300MPa$ $\dot{\gamma} = 1.6 \cdot 10^{-4} \text{ s}^{-1}$ $\gamma = 1.9$

segmentation grain boundary map

all grains

segmentation grain boundary map grain map (segments)

2D and 3D grain size distributions

 \Rightarrow detect multiple modes in 3D

2D and 3D grain size distributions

grain size mapping

 \Rightarrow size domains

orientation mapping

 \Rightarrow random orientation

shape factor mapping

SFI = $P_{measured}$ / $P_{equivalent}$ = large if grain boundary lobate

 $(0.00 < SFI < \infty)$ $(0.00 < SFI < \infty)$

2 phases - 4 grain sizes !

орх

preferred orientation ?

intersecting 2 feature bitmaps

intersecting 3 feature bitmaps

feature space

take-home message(s)

- use image analysis (processing) to measure not to illustrate
- use state-of-the-art image analysis to match state-of-the-art experimentation
- think twice before declaring "the mean grain size"
- use modes of 3D grains they are most meaningful
- put the numbers back into the picture \rightarrow map \rightarrow visualize
- think of images as maps → be quantitative → scale and calibrate (you can observe a lot by watching) → (you can understand a lot by measuring)
- think of microstructures as multidimensional → plot data in feature space (= intersect images)

... and be happy if you do not get a simple answer

announcement

TS1 – Brittle Deformation and Fault-related Processes

Programme Committee Login

Suggest a Session here

TS2 – Ductile Deformation, Metamorphism and Magmatism

Programme Committee Login

Suggest a Session here

Suggested Session Advances in Microstructure and Texture Analysis [Suggest a new Title] Conveners: Renee Heilbronner, Rüdiger Kilian [Suggest a Convener and Description Change]